BRAJ KISHOR PRASAD, brajki@rediffmail.com,
Department of MCA, $2^{\text {nd }}$ Semester
MCA CS2T07: Automata Theory

Pushdown Automata (Finite Automata + Stack)

Pushdown Automata is a finite automata with stack. It is acceptor of Context Free Grammar. It could read the letters of an input string perform stack operations and make state changes.

The execution of a PDA starts with one symbol (Z_{0} or as per our design) on the stack. PDA uses three stack operations as below:

1. POP: The pop operation reads top symbol and removes it from the stack.
2. PUSH: This operation writes a symbol onto the top of the stack.
3. NOP: It does nothing to the stack.

PDA is a seven tuples machine.

$$
P D A=\left\{Q, \Sigma, \delta, q_{0}, Z_{0, F}, \Gamma\right\}
$$

Where,

Q
Σ (uppercase/capital sigma)
δ is the finite set of states, input symbol,
is the next move function or transition
Deterministic PDA $=>Q X\left\{\sum U \in\right\} \times \Gamma \rightarrow Q \times \Gamma^{*}$
(one state)
Non-Deterministic PDA $=>Q \times\left\{\sum U \in\right\} \times \Gamma \rightarrow 2^{\left(Q \times \Gamma^{*}\right)}$
(more than one state)
q_{0}
Z_{0}
$\mathrm{F} \subseteq \mathrm{Q}$
Γ
in Q is the start state,
Bottom of the stack
is the set of final states
stack symbols

Types of PDA

Deterministic: The PDA is deterministic when at most one move is possible from any ID (Instantaneous Descriptions) i.e., a PDA $M=\left\{Q, \Sigma, \delta, q_{0}, Z_{0,} F, \Gamma\right\}$ is deterministic if:

1. for each q in Q and Z in Γ, ehenever $\delta(q, \in, Z)$ is nonempty then $\delta(q, a, Z)$ is empty for all a in Σ; (This condition prevents the possibility of a choice between a move independent of the input symbol (\in-move) and move involving an input symbol)
2. for no q in Q, Z in Γ and a in $\Sigma \cup\{\in\}$ does $\delta(q, a, Z)$ contain more than one element. (This condition prevents a choice of move for any (q, a, Z)) or $\boldsymbol{\delta}(\boldsymbol{q}, \in, Z))$.

Example: $L=\left\{W c W^{R} \mid w \in(0+1)^{*}\right\}$
Non-Deterministic: A non-deterministic PDA M accepts an input if any sequence of choices causes M to empty its stack. Thus M always "guesses right" because wrong guesses, in themselves, do not cause an input to be rejected. An input is rejected only if there is no "right guess".

Example: $L=\left\{W W^{R} \mid w \in(0+1)^{*}\right\}$

Deterministic PDA:

Example 1: Design a deterministic PDA of $L=\left\{a^{n} b^{n} \mid n \geq 1\right\}$.

Here, w = aabbe

Acceptance by empty stack

Transition:
$\delta\left(q_{0,}, a, Z_{0}\right)=\left(q_{0,}, a Z_{0}\right)$
$\delta\left(q_{0}, a, a\right)=\left(q_{0}, a a\right)$
$\delta\left(q_{0,}, b, a\right)=\left(q_{1}, \epsilon\right)$
$\delta\left(q_{1}, b, a\right)=\left(q_{1}, \epsilon\right)$
$\delta\left(q_{1}, \in, Z_{0}\right)=\left(q_{F}, a Z_{0}\right)$ or $\left(q_{1}, \epsilon\right)$

Example 2: Design a deterministic PDA of $L=\left\{W c W^{R} \mid w \in(a+b)^{*}\right\}$.

Solution:

$\mathrm{w}=\{\in, a, b, a a, a b, b b, a b a, b b a, \ldots ., a a b a a b, \ldots \ldots .$.
Let we take $\mathbf{w}=\mathbf{a b b}$ then $\mathbf{w}^{\mathrm{R}}=\mathbf{b b a}$ therefore $\mathbf{w c w}^{\mathrm{R}}=\mathbf{a b b c b b a}$

Here, w = abbcbba \in

Transition diagram for $\boldsymbol{L}=\left\{\boldsymbol{W} \boldsymbol{c} \boldsymbol{W}^{\boldsymbol{R}} \mid \boldsymbol{w} \in(\boldsymbol{a}+\boldsymbol{b})^{*}\right\}$

Transition Function:

Initial condition: $\quad \delta\left(q_{0}, a, Z_{0}\right)=\left(q_{0}, a Z_{0}\right)$
$\delta\left(q_{0,}, b, Z_{0}\right)=\left(q_{0}, a b\right)$

PUSH:

$$
\begin{aligned}
& \delta\left(q_{0}, a, a\right)=\left(q_{0}, a a\right) \\
& \delta\left(q_{0}, b, a\right)=\left(q_{0}, b a\right) \\
& \delta\left(q_{0}, a, b\right)=\left(q_{0}, a b\right) \\
& \delta\left(q_{0}, b, b\right)=\left(q_{0}, b b\right)
\end{aligned}
$$

Ignore:
$\delta\left(q_{0,}, c, a\right)=\left(q_{1}, a\right)$
$\delta\left(q_{0}, c, b\right)=\left(q_{1}, b\right)$

POP:

$$
\delta\left(q_{1}, a, a\right)=\left(q_{1}, \epsilon\right)
$$

$$
\delta\left(q_{1}, b, b\right)=\left(q_{1}, \epsilon\right)
$$

Final:

$$
\delta\left(q_{1}, \in, Z_{0}\right)=\left(q_{1}, \epsilon\right)
$$

Example 3: Consider the following transitions:

$$
\begin{aligned}
& \delta\left(q_{1}, 0, R\right)=\left(q_{1}, B R\right) \\
& \delta\left(q_{1}, 0, B\right)=\left(q_{1}, B B\right) \\
& \delta\left(q_{1}, 0, G\right)=\left(q_{1}, B G\right) \\
& \delta\left(q_{1}, 1, R\right)=\left(q_{1}, G R\right) \\
& \delta\left(q_{1}, 1, B\right)=\left(q_{1}, G B\right) \\
& \delta\left(q_{1}, 1, G\right)=\left(q_{1}, G G\right) \\
& \delta\left(q_{1}, c, R\right)=\left(q_{2}, R\right) \\
& \delta\left(q_{1}, c, B\right)=\left(q_{2}, B\right) \\
& \delta\left(q_{1}, c, G\right)=\left(q_{2}, G\right) \\
& \delta\left(q_{2}, 0, B\right)=\left(q_{2}, \in\right) \\
& \delta\left(q_{2}, \in, R\right)=\left(q_{2}, \in\right) \\
& \delta\left(q_{2}, 1, G\right)=\left(q_{2}, \in\right)
\end{aligned}
$$

a. Write the grammar for above transition. => CFG
b. Which automaton represents the above transition? => Pushdown Automaton
c. Name the type of automaton. => Deterministic Push Down Automata
d. Show the language of above transition. $=>\boldsymbol{L}=\left\{\boldsymbol{W} \boldsymbol{c} \boldsymbol{W}^{\boldsymbol{R}} \mid \boldsymbol{w} \in(\mathbf{0}+\mathbf{1})^{*}\right\}$
e. Show the pictorial diagram of above transition.

